
ED 102 969

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY
REPORT U0
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

DOCUMENT RESUME

IR 001 651

Nutt, Gary J.
Computer System Resource Requirements of Novice
Programming Students.
Colorado Univ., Boulder. Dept. of Computer
Science.
National Science Foundation, Washingtoil, D.C.
CU-CS-039-74
Feb 74
32p.

mp-S0.76 HC-$1.95 PLUS POSTAGE
College Students; *Computer' Programs; Computers;
*Computer Science Education; Data Processing; Higher
Education; Information Scientists; Information
Systems; Input OutputsvProgramers; *Programing;
Resource Centers
FORTRAN; *Minicomputers

ABSTRACT
The characteristics of jobs that constitute the mix

for lover division FORTRAN classes in a university were investigated.
Samples of these programs were also benchmarked on a larger central
site computer and two minicomputer systems. Xt was concluded that a
carefully chosen minicomputer system could offer service at least the
equivalent of the central system, and that certain aspects could be
distinctly better. (Author/SK)



v.

4

0

BEST COFY AVAILABLE

Computer System Resource Requirewants
of Novice Programming Student6 *

by

Gary J. Nutt
Department of Computer Science

University of Colorado
Boulder, Colorado 80302

Report #CU-CS -039 -74 February, 1974

U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DO: UMENT HAS SEEN REPRO
OUCED ri!'ACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSt NON OR POLICY.

This work was funded by National Science Foundation Grant #GJ-660



ABSTRACT

This Ch&racteriotics of jobs that constitute the mix for lower division

FORTRAN classes in a university are investigated. Samples of these programs

are also :,enChmarked on a large central site computer and two minicomputer

systems. The conclusion of this study is that a carefully chosen minicomputer

system could offer service at least the equivalent of the service provided

by the central site system, and that certain aspects of this service could be

distinctly better.

CR Categories: 1.5, 2.4, 6.2



In a time of constant (or decreasing) enrollment in many universities,

one might not expect enrollment for a wen set of courses to increase sig-

nificantly. The University of Colorado has been operating at an imposed

enrollment of 20,000 students since the Fall Semester of 1972; nevertheless,

all of the lower division computer classes hive been subject to higher enroll-

meats in corresponding academic terms from year-to-year. In particular, the

lower division FORTRAN class enrollment for the 1971.1972 academic year was

765 students; for the 1972-1973 academic year, 874 students; and the 1973-1974

academic year enrollment figure is 950 students.* Each of these students write

and test an average of twelve programs per year, with each program requiring

about 5 debugging runs. This large (and growing) novice student job load

requires a significant amount of computer center resource in terms of operator

time, line printer and card reader use, keypunch, etc. It is our contention,

however, that an insignificant amount of processor time is required to support

this mix.

A few critical characteristics of lower division FORTRAN programs will

be explored in some depth later in this paper; we now only briefly define the

41.111MIIIMIR

* Department of Computer Science lower division FORTRAN courses are:

Computer Science 162 - Digital Computer Programming
Computer Science 201 - Introduction to Computer Scierce for Scientists and

Engineers
Computer Science 203 - Introduction to Computer Science for Liberal Arts

Majors
From Fall, 1971 through Fall, 1972, Computer Science for Business Majors
was also a FORTRAN course.



character of a typical program from this mix. The average job includes a

call to the compiler, possibly followed by loading and execution. The total

amount of central processor, time, on the average, is less than one second;

a portion of this processing requirement is absorbed in compilation and loading.

The programming assignments become more complex late in the academic term,

requiring more run time, (the average central processor time is still less than

two seconds). The reasons for this light processor requirement are concerned

with the assignments; iterative calculations are generally contrived and

converge rapidly, or the error bound is very generous. Ole should also point

out that error bounds are never seriously considered in the lower division

programming classes.). On the other hand, the average program from this mix is

composed of about 30 cards, and produces about 140 lines of output. It is

. easy to recognize the imbalance between the time required for printing and

the time required for processing.

At the University of Colorado, as in many universities, lower division
4

programming courses use the central site computer, in this case a pair of

Control Data 6400 systems. This particular install tion supports both batch

and interactive processing, although the introductory students use only the

batch processing facility. In addition to the educational load, the system

is subjected to a variety of other tasks; it must support research projects

involving large numerical computations; it is likely that administrative data

processing may be done on the machine, etc. This wide range of responsibility

can only be covered at the expense of individual subsets of the set o2 all

users. As the work load subjected to the system increases, turnaround time

for individual jobs may be expected to increase. Features of the system that

6



might be oriented toward the novice programmer may be sacrificed for the good

of the community. For example, optimizing compilers. may replace those that

produce object code more rapidly; run time error messages may be terse and

uninterpretable; the job control language may be so complex as to make a simple

compile-and-execute sequence a formidable task; the job accounting algorithms

may be unrealistic.

One alternative to central site computing is the use of a dedicated mini-

computer system for lower division programming students. This situation can

improve the cost-effectiveness of computation by using relatively inexpensive

processing power to achieve a closer match between job input/output time and

the processor utilization. However the use of minicomputer systems may

actually create a situation in which the bottleneck for throughput is the

processor, i.e., compilation, loading, and execution of a job may actually

require more time than reading the deck of cards or printing the resulting

listing.

Nevertheless, we contend that this alternative can be superior to the use

of a central site system if the minicomputer system is carefully chosen. In

the remainder of this paper we shall support this contention by discussing a

job mix analysis done on lower division FORTRAN programs executed on the Control

Data 6400 batch system. We shall also discuss a more cost-effective method of

offering the same service with the added benefit of minimal hands-on experience.



JOB LOAD ANALYSIS

A characterization of the lower division FORTRAN job load, for the

purpose of this study, is primarily concerned with indicators of I/O time

and processor utilization. It is desirable to obtain a quantification of the

expected number of input cards for a program, the number of lines to be printed,

and the amount of processor time spent in satisfying computational needs of

the average program, as well as corresponding maximum loads. It

might appear that we should also be interested in the mix of machine instructions

used during program execution, so that comparisons between large system exe-

cution and minicomputer executions of the same programs could be made. Some

simple bendhmark, programs illustrate that this is not necessary.

An interesting Characteristic of a job run on the central site computer

would be the expected actual turnaround time, although we have not been able

to obtain accurate quantification of this measure of performance. We would

also like to obtain true job costs, although this, too, is difficult to obtain,

due to the somewhat artificial educational computer time rates that usually

exist in this type of environment.

To achieve the goals for load characterization, we used two standard

monitoring tools [2]. The system accounting log is exploited to obtain a

reasonably conclusive set of data concerning I/O characterisation, central

processor times, accounting charges, and throughput requirements. Next home-

work assignments that constitute the mix were written and benchmarked on the

Control Data 6400 system. The programs were then tested on two available mini-

computer systems to compare execution times.

8



.5s.

Accounting Log Analysis

All student jobs that are executed on the Control Data 6400 system at

the University of Colorado must supply accounting information designating a

"user number" and a "subaccount wonber". Each course is assigned a user

number, and each student is assigned his own subaccount number. Thus the

accounting system allows job charges to be made directly to the individual

student subaccount. This accounting procedure proves to be useful in associa-

ting monitoring information with an individual, as will be discussed below.

Each job executed on the system produces a trace of messages for accounting

purposes, as well as operator information end a list of control cards. This

extended accounting log, or dayfile, ha3 been shown to be quite useful for

analyzing machine performance [1, 4j. Hovover, the volume of information

. written to the dayfile precludes the possibility of saving any significant

number of past records. The University of Colorado Computing Center has

recognized this problem, and has taken measures to preserve certain items of

information from the system dayfile for long periods of time [3]. The process

is to perform an analysis of the system dayfile, gathering a set of character-

istics for a job, condensing these characteristics to a 136 character string,

and saving the resulting strings on a magnetic tape file called the Job Meter

File. Table 1 summarizes the pertinent information contained in a record

on the Job Neater File. The practice of producing this condensed file was

initiated in January, 1972, and thus all information (shown in Table 1) for

each job executed on the system since that time is available for analysis. It

is this Job Master File that we have used to obtain information about the job

load caused by FORTRAN programs.

9



The analysis program utilizes the user number field to recognize

applicable records from the Job Master File. The subaccount field is used to

distinguish between jobs submitted by the various students enrolled in any

given class. The following illustrations of data correspond to the set of

student programs for Computer SCience 201, "Introduction to Computer Science

for Scientists and Engineers" for the Spring Semester (approximately January

15 through May 15) of 1973... Data gathered for other courses and time periods

is typefied by this particular sample.

In the following presentations, the histograms are for the job mix over

the entire semester and we also present some histograms for the month of May,

which represents the maximum demand placed on the system by the C.S. 201

students. The maximum demand month is analyzed since it is this load that

will place the highest demand on the dedicated minicomputer (i.e., it is the

"worst case" load).

During the Spring Semester of 1973 there were 18164 jobs submitted under

the C.S. 201 user number. There were 287 students enrolled in the course

approximately two weeks after the term began, hence each Student submitted

an average of 63.3 jobs for the semester. In the Job Master File analysis

program, we compute the mean number of times that a subaccount number (i.e.,

an individual student account number) appeared in any given day. This measure

was deemed worth obtaining, since our experience (and Teaching Assistants) told

us that students often did their entire assignment in one day. The mean varizd -

from 2.6 jobs/day for each student in January to 5.0 jobs/day for each student

in May, with a mean over the entire semester of 3.6 jobs/day.



.7.

The batch system spools card images onto the disk for subsequent memory

and processor assignment. Disk space is allocated to each job in 64 word

(640 character) units. The Job Master File records this sector allocation

rather than the actual number of cards read for each job, and it is that

measure that is given here. Observations' indicate that batch jobs require

at least three sectors, i.e., there is a two sector overhead figure added

into each job allocation.* Thus, for 80 column card input, the number of

cards in i sectors is 8(i-3) + 4, where 4 is the expected number of cards in

the last sector.

Figure 1 is a histogram of the number of input sectors allocated per job,

e.g., about 13% of the 18164 jobs (2326) were allocated more than three sectors

and less than or equal to 4 sectors. The arithmetic mean number of disk

sectors allocated for card images was 184.8; the histogram indicates a median

value of about 6 sectors/job. The explanation for this difference is that

a small number of jobs, 65, were allocated more than 26 sectors, and have

biased the mean value substantially. In our characterization of the typical

job we shall use the median value; a sector count of 6 is equivalent to about

30 cards per job. This number of cards includes control cards, program, and

data.

Figure 2 shows the statistics for disk sectors used to hold the input

stream for jobs submitted during the month of May. Again we note an inflated

mean value and a median value of about 6 sectors.

The output spJoling process again uses 640 character disk sectors to hold

line printer images, although a packed format is used for the representation

of a line. Our investigation into the average number of characters per line

*19 jobs in the sample period were allocated less than or equal to 1 sector;
this inconsistency is caused by interactive jobs on the student account
number, probably entered by the instructor.



indicates that a line is about 50 characters long. This observation agrees

with an independent study carried out by the Computing Center.* With t%is

in mind, the expected number of lines for j sectors is

640 character sector
j sectors III 12.8 j lines.50 character line

Figure 3 indicates our finding over the entire semester, and Figure 4

gives the corresponding results for the month of May. The mean value for

output sector allocation of 13.9, again, is biased by a few jobs with an

inordinately high allocation of output sectors (33 jobs were allocated more

than 150 sectors for output). However, the median value is close to the

calculated arithmetic mwan, compared to an expected number of lines per job

of 178. The corresponding mean for May was 19 sectors, (243 lines) prompting

Figure 5 which shows the mean number of output sectors allocated to each job

for each month in the sample period. The conclusion is that the amount of

output produced by a typical job is sensitive to the point In the semester;

a similar analysis indicates that the number of cards is relatively constant

over the same period of time.

A measAre of the amount of time that the job competes for the processor

is the amount of central processor time charged to the job. This measure

ignores the amount of In, particularly in the Control Data 6400 with its

peripheral processors. In Figure 6, tha histogram for central processor time

is given. Note that 88.5% of all jobs submitted during the semester required

less than or equal to one second of central processor time. This processor

charge includes compilation, loading, and execution. Almost 95% of the jobs

* This work was done by C. J. Brauch, Assistant Director, University of
Colorado Computing Center.



require less than two seconds and almost all of the reivaining jobs ran to

time limit expiration, as might be expected in an introductory programming

course. The mean central processor time for the entire semester was 1.0

seconds, while the mean central processor times for the individual months were

0.25 seconds, 0.60 seconds, 0.67 seconds, 0.93 seconds, and 1.7 seconds for

the respective months of January through May. The histogram for processor

time during the month of May does not differ substantially from Figure 6,

although the mean has increased.

Data was gathered and analyzed to represent the amount of time that a

job was resident either in an input/output queue, or in competition for central

processor and disk. From practical observation of computer center operation,

these results were rejected as meaningless for this study. The average amount

of "queue-to-queue" time for our class of jobs was only 14 seconds; due to

the process by which job decks are submitted, run, and output returned to

the user, the "actual turnaround time" is closer to 15 minutes to a half

hour. Thus we could not justify using these figures to reflect a turnaround

figure that represented true service to the user.

The accounting algorithm used to compute dollar charges for a job uses

the parameters: .average amount of memory allocates, central processor time,

mass storage transfers, card sectors allocated, and output sectors allocated.

The exact coefficients for these parameters have varied with the three

academic years we have mentioned, and with certain other factors such as remote

job entry site. Nevertheless, we did monitor the job dollar charges to get

an indicator of the way in which our educational computer time budget is spent.

Figure 7 is a histogram of dollar charge per job, for the 18164 jobs. The



-10

mere cost was about 340, for a total allocation of $6257.92 for the

semester (this figure was obtained from billing invoices, and agrees with our

monitored data). The resulting dollar cost per student for the term was

$21.80 for computer time. Considering the combination of all lower division

FORTRAN classes, the allocation amounted to $7190.43 or about $18.80 per student

Covresponding charges for the fall semester (under the same charging algorithm)

were $6578.28 total, ur $17.40 per student. Both the previous year (1971-72

academic year) and the following year saw higher charging rates. The total

amount of money spent on the lower division FORTRa computer time amounted to

$13768.73 for the 1972-1973 academic year (9 months).

A final conclusion about the data gathered from the Job Master File is

concerned with input-process-output overlap times. Using the mean values

for processor time and output lines and the median value for cards read, we

can calculate card reader and line printer rates required to achieve a

maximum overlap of utilization time. Assuming one second of processor time

(utilized in about 2 seconds of real time) the card reader must read 30 cards

and the line printer must print 180 lines in the corresponding real time

period. Thus the card reader must operate at a constant 9000 cards per minute

and the line printer (ignoring page eject time) must operate at a constant

5400 line per minute to keep up with the processor.

14



The Benchmark Teets

This portion of the study was necessary in order to obtain an understanding

of processor requirements of the FORTRAN programs on some typical minicomputer

systems. Four programming assignments were chosen from the lower division

FORTRAN course work; the assignments varied from the initial assignment to

the final assignment for the academic semester. These assignments were then

programmed and tested on the Control Data 6400 batch system in order to

compare these properties with the data obtained from the Job Master File

analysis. The accounting log provides the amount of central processor time

Charged to the job for compilation and for the load and execute phase of the

job. The time of day in seconds is also available from this log thus we

have a clumsy estimate of real time requirements. The amount of real time

required for processing never exceeded two seconds for any single phase of

job execution, even though the job was serviced in a multiprogramming

environment.

The four programs were then tested on a "large minicomputer" system

considered by some to be a "midi-computer"; we shall call this computer K.

Average instruction execution times and memory cycle time are not relevant

here (as will be seen below), since the majority of processor time is spent

in the compiler and loader. This system also printed each line on the line

printer after compilation of that statement; this tends to have a detrimental

effect on the amount of time required to compile the code.

Finally, three of the four programs were tested on another classic mini-

computer (which we shall call Y) which has gained a reputation for inefficient

software. This system compiled the code with no listing until the compilation

process was complete.

15



The four test programs are described below, and the benchmark findings

. are recorded in Table 2.

The first test program is essentially a keypunching assignment; it consists

of eight cards containing FORTRAN statements and four job control cards. This

program produced about 80 lines of output spread over four pages, including

twenty lines on a banner page, two pages of listing, and an additional page

with 20 lines of accounting information and control card information

The second test program would typically have been assigned in the second

month of the course. The student is given a crude definition of a prime number,

and he is asked to generate the primes that are less than or equal to twenty.

This program was consciously written to look like code produced by a novice

programmer, and contains three levels of nested loops. Our test version was

composed of 18 FORTRAN cards and 4 control cards, and produced 95 lines of

output on the central site machine.

Erngram number 3 would be assigned near the middle of the course, and

is an output formatting exercise. The deck contains 30 FORTRAN statements,

4 control cards, and one data card; the output consists of about 160 lines

including the 40 lines of banner and accounting information.

The last program is a simulation of a random walk on a 30 x 40 grid, with

the marker initially placed in the center of the grid. The program was to

execute until the marker exited successfully "through a door" or unsuccessfully

"through a wall". The program that executed on the Control Data 6400 had 59

FORTRAN cards, 4 control cards, and one data card. There were about 170

lines of output. The code used a random number generator which was not

immediately available on either of the minicomputers, thus there is no execution

time on minicomputer X, and no test of the program on minicomputer Y.

16



The data in Table 2 indicates the compiler on minicomputer X is sub-

stantially faster than the compiler for minicomputer Y. It is also apparent

that FORTRAN programs that are larger than, say, 100 cards should not be

compiled repeatedly on these systems due to the excessive compile time.

The load times are relatively constant for each minicomputer; i.e. X loads

in about 12-13 seconds and Y loads in about 35 seconds. It is likely that

disk transfer rates and library sizes determine these times. With the

exception of the execution of TEST3 on minicomputer X, all of the execution

times are insignificant when compared with compile and load times. We are

unable to explain the inordinately large execution time for TEST3 on X.

A similar benchmark test was done on a third minicomputer system with

a different set of programs.* The first program tested evaluated a 10 x 10

determinant with floating point numbers. Gary reports that the program

consisted of 113 cards, required 7 seconds to compile (without listing), 15

seconds to load, and less than one second to execute. He also benchmarked a

program to compute.the greatest common denominator of two integers. This

program required 25 cards, compiled without a listing in 5 seconds, and again

executed. in less than one second.

* John M. Gary, Department of Computer Science, University of Colorado.

17



A Dedicated Minicomputer System

We are now ready to consider the plausibility of supporting the lower

division FORTRAN prograaming students on a minicomputer system.. The primary

.consideration involved here are those of cost and efficiency. The proposed

system should use an average budget of less than $15000 /year if it is to be

cost competetive with the existing central site computer system. (It is

assumed that the system is used to support no other coouter science course,

where the total computer time budget is about $50000 /year.) The system must

provide good service to a minimum of 500 students per week, with growth

possibilities to 750 students per week. Each student is expected to submit about

5 jobs per week (i.e. 63.3 jobs/semester), thus the minimum number of jobs per we-

is 2500, and the maximum is 3750 jobs per week. If these goals are met, the

system can offer approximately the same service as the central site system.

In addition, it is desirable that the dedicated system handle this load in

a forty hour week, offering actual turnaround time approaching one minute.

It is also desirable that each student be given the opportunity to enter

his deck of cards into the card reader and burst.his listing from the line

printer. Operating in this mode, a dedicated system offers nearly instant

batch turnaround to small groups of students using the machine in a given time

period. Each student is also provided with a minimum degree of hands-on

experience. It is this set of factors that weighs heavily toward a dedicated

minicomputer system.

The Job Master File analysis indicates that a typical user program

(during the course of the semester) is composed of about 30 cards and produces

about 180 lines of output (including 40 lines of the banner page and accounting

1.8



information). The execution time of the program is insignificant. During

peak demand periods near the end of the semester, the typical job may consist

of about 36 cards and produce about 240 lines of output.

Taking the job load as a requirement on the system, we can estimate

the required card reader rate, line printer rate, and processor throuahput:

Assuming that the system is in operation 40 hours per week, and that eaf:11

student requires an average of 5 jobs per week, we obtain

Number of jobs/week
week

week

(Number of students /week) x 5

NNumber of jobs/minute Nu
inute 2400

Card reader rate for semester CR 30 N
8V8 nute

Card reader rate for peak period °max 36 Nminute

Line printer rate for the semester
17ave

140 Nminute

Line printer rate for peak period LPm 200 Nminute

Here we ignore page eject times and the time required to remove an individual

listing from the line printer. We also assume that a bamer page and ex-

tensive accounting information is not printed.

To maximize resource overlap between the card reader, processor, and

line printer operation, each job must be completely serviced by the processor

(i.e. spooled in, scheduled, computed, loaded, executed, and spooled out)

in

60
seconds.

N
minute

Table 3 summarizes these required service rates for various student loads

considering average loads for the entire semester and peak loads for the end

of the semester. The assumptions used here are:

19



-16-

-- The character of individual programs from semester-to-semester is

static

-- No banner page .nor extensive account:'.ng log is to be printed

-- The card reader input rate is greater than or equal to the service

rate of the system

-- Page eject time is negligible

During the fall semester of 1973, 513 students were enrolled in the lower

division FORTRAN classes. From Table 3, it can be seen that a modest mini-

computer system could handle the peak load, allowing about one minute of

processor time for compilation, loading, etc. Furthermore, a very slow card

reader is adequate, (it must read cards at a rate of about 40 cards/minute),

and any faster card reader would create the need for substantial (infinite)

disk space for job spooling. If the system ware:equipped with a single line

printer which operated at a rate in the excess of 210 lines/minute, the printer

could adequately handle the job load.

Note that the portion of the machine that must be drastically upgraded

for increasing job load is the processor itself, provided that a reasonable

card reader (say 75-100 cards per minute) and line printer (say 300 lines

per minute) are initially configured into the machine. Recall that the

major portion of processor time for the benchmark programs was employed in

the loader; it is conceivable that as the current job load grows upward,

advanced (graduate) students could be involved in improving both the compiler

and loader efficiency in order to meet the processor requirement. Of course

a better solution is to initially obtain a minicomputer with adequate soft-

ware.

20



-17-

SUMMARY

In this paper we have discussed the job load imposed on a central

site computer system by the lower division FORTRAN programming students.

In particular, the number of jobs submitted for computer service was ob-

tained, and the expected number of jobs per student was calculated. A

typical job profile was derived, with respect to the number of cards in

the job, the number of lines of output produced by the job, and an indicator

of the processor requirement for three systems. Using this data, we have

speculated a configuration of a minicomputer system that would handle the

current job load as well as allowing for growth to a load that is 1.5 times

the size of the current load. The main conclusion, then, is that a dedicated

minicomputer can handle the growing load caused by lower division FORTRAN

programming students, and that a careful choice of the system can provide

an excess of processor resource which could be used for other purposes.

21



REFERENCES

1. Nutt, G. J., "The Boeing Dayfile Analysis Modified for the University
of Washington CDC 6400", University of Washington Computer Center
Technical Report No. 4, (Oct., 1970).

2. Nutt, G. J., "Computer System Monitoring Techniques", University of
Colorado Department of Computer Science Technical Report No. CU-CS-013-73
(Feb. 1973).

3. Smith, H.E., "JOBLIST: Monthly Job Listing", DIGIT, University of Colorado
Computing Center, Volume 8, No. 10, (June, 1973), page 7.

4. Watson, R. "Computer Performance Analysis: Application of Accounting
Data", Rand Report No. R- 573-NASA/PR (May, 1971).

22



Job Master File Format

(Some items of information that actually appear on a job description record
are omitted here for brevity.)

1, Subaccount number

2. User number

3. Number of tapes assigned to the job

4. Priority of the job

5. Job name and identification

6. Batch or interactive job indicator

7. Day of the month

8. Number of card sectors read

9. Number of line sectors printed

10. Number of microfilm sectors printed

11. Number of card sectors punched

12. Central processor time (in tenths of seconds)

13. Mass storage sector reads/writes

14. Mag tape sector reads/writes

15. Time the job spent in the input/output queues and Competing for a

control point ("Internal turnaround time")

16. Average amount of memory allocated.

17. Accounting dollar charge.

Table 1



P
r
o
g
r
a
m

T
E
S
T
1

T
E
S
T
2

T
E
S
T
3

T
E
S
T
4

C
D
C
 
6
4
0
0

C
o
m
p
i
l
e

(
C
P
)

L
o
a
d

&

E
xe

cu
te

(C
P)

0.
07

7
0.

15
6

0.
11

6
0
.
1
7
2

0
.
2
3
7

0
.
3
1
9

0
.
4
7
5

0
.
2
5
6

C
o
m
p
i
l
e

(
r
e
a
l
)

1 2 2 2

L
o
a
d
 
&

E
x
e
c
u
t
e

(
r
e
a
l
)

M
i
n
i
c
o
m
p
u
t
e
r

M
i
n
i
c
o
m
p
u
t
e
r
 
Y

C
o
m
p
i
l
e
 
w
/

L
i
s
t
i
n
g

(
r
e
a
l
)

L
o
a
d

(
r
e
a
l
)

C
o
m
p
i
l
e

E
x
e
c
u
t
e
 
w
/
o
 
l
i
s
t
i
n
g

(
r
e
a
l
)

(
r
e
a
l
)

L
o
a
d

(
r
e
a
l
)

E
x
e
c
u
t
e

(
r
e
a
l
)

1 1 1 1

6
.
0

7
.
8

1
3
.
2

2
4
.
0

1
3
.
2

1
.
8

1
2
.
0

3
.
0

1
2
.
6

7
.
2

1
3
.
2

T
e
s
t
 
P
r
o
g
r
a
m
 
T
i
m
i
n
g
 
R
e
s
u
l
t
s

T
a
b
l
e
 
2

O
N

9

1
2 1
8

3
5

3
0

3
7

2 2 4



BEST COPY HAIM

Greater
Than

Less

Equal

1

Number

19

1 2 0

2 3 44

3 4 2326

4 5 3724

5 6 4098

6 7 3387

7 8 2223

8 9 1046

9 10 618

10 12 368

12 14 151

14 16 54

16 18. 14

18 20 6

20 22 7

22 24 5

24 26 9

26 - 65

Mean: 184.8
Population: 18164

10% 20% 30% 41% 50%

12.8
*************

20.5
********************

22.6**********************

18.6**Ork**************

12.2***********
5.8

******

3.4
Or**

2.0
It*

CARD COUNT IN SECTORS - SEMESTER

FIGURE 1



S
t
u
d
e
n
t
s

.

J
O
b
s

J
o
b
s

A
v
e
r
a
g
e

c
a
r
d
 
r
e
a
d
e
r

r
a
t
e
 
(
C
R

)

ca
rd

s 
/s

in
ce

P
e
a
k

c
a
r
d
 
r
e
a
d
e
r

r
a
t
e
 
(
C
R

.

)

ca
rd

s/
m

il&
A

A
v
e
r
a
g
e

l
i
n
e
 
p
r
i
n
t
e
r

r
a
t
e

(L
P 

J)
l
i
n
e
s
/
n
a
g

1
P
e
a
k

l
i
n
e
 
p
r
i
n
t
e
r

r
a
t
e
 
(
L
P
)

l
i
n
e
s
h
a
r
t
e

P
r
o
c
e
s
s
o
r

s
e
c
o
n
d
s

p
e
r
 
J
o
b

w
e
e
k

w
e
e
k

C
M

)
w

ee
k

m
i
n
u
t
e

(
M
a
i
nu
t
d

5
0
0

2
5
0
0

1
.
0
4

3
1
.
2

3
7
.
4

1
4
5
.
6

2
0
8
.
0

5
7
.
7

5
5
0

2
7
5
0

1
.
1
5

3
4
.
5

4
1
.
4

1
6
1
.
0

I
2
3
0
.
0

5
2
.
2

6
0
0

3
0
0
0

.
1
.
2
5

3
7
.
5

4
5
.
0 .

,

1
7
5
.
0

2
5
0
.
0

4
8
.
0

6
5
0

3
2
5
0

1
.
3
5

4
0
.
5

4
8
.
6

1
8
9
.
0

2
7
0
.
0

4
4
.
4

7
0
0

3
5
0
0

1
.
4
6

4
3
.
8

5
2
.
6

2
0
4
.
4

2
9
2
.
0

4
1
.
1

7
5
0

3
7
5
0

1
.
5
6
.

4
6
.
8

5
6
.
2

2
1
8
.
4

3
1
2
.
0

3
8
.
5

R
e
q
u
i
r
e
d
 
S
e
r
v
i
c
e
 
R
a
t
e
s

T
a
b
l
e
 
3



Greater
Than

1

2

3

4

5

6

7

8

9

10

12

14 .

16

18

20

22

24

26

BEST COPY AVAILABLE

Less

Equal

1

2

3

4

5

6

7

8

9

10

12

14

16

18

20

22

24

26

Number

7

0

3

77

83

360

1300

784

411

277

182

53

18

6

4

2

3

5

14

10% 20% 30% 40% 5

2.1
**

2.3
* *

10.0***Mt***
. 36.2

************************************

21.8
*********************

11.5
************

7.7
********

5.1
*****

1.5
**

Mean: 69.29
Population: 3589

CARD COUNT IN SECTORS - MAY

Figure 2

27

4



.

Greater Less
Than Equal Number

5 2690

5 10 6350

10 15 4210

15 20 2603

20 30 1673

30 40 268

40 50 96

50 60 36

60 75 43

75 90 43

90 105 17

105 125 19

125 150 56

150 .
60

Mean: 13.88
Population: 18164

BEST COPY MAME

10%

14,8
***************

20% 30%

35.0
*********************************

23,2
***********************

14,3
**************

9,2
01********

1.5
**

LINE COUNT IN SECTORS - SEMESTER

Figure 3

28

50%



EST COPY AVAILABLE

Greater Less
Than Equal Number 10% 21% 31% 41% 5.%

5 88 &hi

20.2
5 10 724 ********************

10 15 1063

20 30 584

30 40 81

40 50 33

50 60 15

60 75 19

75 90 19

90 105 4

105 125 9

125 150 26

150 20

Mean: 19.01
Population: 3589

29.6
******************************

25.2
15 20 905

16.3

************************

*****************
2.3
**

LINE COUNT IN SECTORS - MAY

Figure 4 29



20

15

10

3.9

BEST COPY AIME

6.8

January ebruary

9.1

Marc

16.8

19.0

mu

MEAN VALUE OF OUTPUT SECTORS /JOB BY MONTH

FIGURE 5



G
r
e
a
t
e
r

L
e
s
s

T
h
a
n

E
q
u
a
l

N
u
m
b
e
r

0
.

1
0

1
0

2
0

1
6
0
8
3

1
0
5
3

.

8
8
.
5

ire
nl

r*
**

*f
lri

r*
**

**
**

dl
rt

**
itr

ih
lk

**
**

**
**

**
-k

ih
llr

**
**

A
nk

fN
ht

**
**

**
**

**
iri

nH
hI

nH
H

H
H

lri
hk

**
**

**
**

**
**

5
.
8

**
**

**
**

**
*

2
0

3
0

7
7

3
0

4
0

6
1

4
0

5
0

3
6

i

5
0

6
0

2
6

i
6
0

7
0

2
2

41
=

=
,

7
0

2
4
0

8
0
6

2=

M
e
a
n
:

9
.
7
7

P
o
p
u
l
a
t
i
o
n
:

1
8
1
6
4

J 4

C
P
 
T
I
M
E
 
I
N
 
H
U
N
D
R
E
D
T
H
S
 
O
F
 
S
E
C
O
N
D
S
 
-
 
S
E
M
E
S
T
E
R

F
I
G
U
R
E
 
6
'



BEST COPY AVAILABLE

Greater
Than

Less
Equal

20

Number

2 372

10% 20% 30% 40% 50%

13.1
*************

20 30 10618 ***************************************************

30 40 1345
7.4

*******

11.1
40 50 2010 ***********

50 60 769
4.2

****

60 70 67

70 80 439
2.4
* *

80 90 114

90 100 54

100 120 110

120 140 78

140 160 49

160 180 36

180 103

Mean: 34.46
Population: 18164

ACCOUNTING CHARGE IN CENTS - SEMESTER

FIGURE 7


